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Cognitive Workload Measurement and Modeling Under Divided Attention

Spencer C. Castro and David L. Strayer
University of Utah

Dora Matzke
University of Amsterdam

Andrew Heathcote
University of Tasmania

Motorists often engage in secondary tasks unrelated to driving that increase cognitive workload, resulting
in fatal crashes and injuries. An International Standards Organization method for measuring a driver’s
cognitive workload, the detection response task (DRT), correlates well with driving outcomes, but
investigation of its putative theoretical basis in terms of finite attention capacity remains limited. We
address this knowledge gap using evidence-accumulation modeling of simple and choice versions of the
DRT in a driving scenario. Our experiments demonstrate how dual-task load affects the parameters of
evidence-accumulation models. We found that the cognitive workload induced by a secondary task
(counting backward by 3s) reduced the rate of evidence accumulation, consistent with rates being
sensitive to limited-capacity attention. We also found a compensatory increase in the amount of evidence
required for a response and a small speeding in the time for nondecision processes. The International
Standards Organization version of the DRT was found to be most sensitive to cognitive workload. A
Wald-distributed evidence-accumulation model augmented with a parameter measuring response omis-
sions provided a parsimonious measure of the underlying causes of cognitive workload in this task. This
work demonstrates that evidence-accumulation modeling can accurately represent data produced by
cognitive workload measurements, reproduce the data through simulation, and provide supporting
evidence for the cognitive processes underlying cognitive workload. Our results provide converging
evidence that the DRT method is sensitive to dynamic fluctuations in limited-capacity attention.

Public Significance Statement
People around the world endanger the lives of themselves and others every day by dividing their attention
across multiple tasks, such as driving and talking on a cell phone. These dangers result from splitting and
overtaxing our limited voluntary attentional efforts. Current tools for measuring attentional effort, also
known as cognitive workload, lack insight into cognitive factors that can cause fatal errors. With the
advent of new distracting technology in cars, if we do not effectively measure cognitive workload fatal
human errors may grow. To quantify cognitive workload under a simulated driving-like task, the current
study details our application of mathematical modeling to an International Standard for measuring
ongoing cognitive workload in the vehicle. This research provides a framework for accurately quantifying
cognitive workload and the factors that contribute to it, which will allow future researchers and
policymakers to determine the danger inherent in many tasks within the vehicle.

Keywords: detection response task, driving simulation, cognitive workload, evidence accumulation modeling,
multitasking

Supplemental materials: http://dx.doi.org/10.1037/xhp0000638.supp

The capacity limits of human cognition play a central role in
performing everyday activities. These limits of capacity affect

psychological constructs from self-regulation (e.g., Muraven &
Baumeister, 2000) to the prevalence of stereotyping (e.g., Biernat,
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Kobrynowicz, & Weber, 2003), but they become most apparent
under divided attention: when people attempt to perform more than
one cognitive activity at the same time (e.g., driving an automobile
and using a smartphone). Performing these tasks requires cognitive
effort, or a mental workload that must be maintained to achieve the
concurrent goals. Hart and Staveland (1988) defined mental work-
load as representing “. . . the cost incurred by human operators to
achieve a specific level of performance” (p. 2). Based on this view
of workload, Strayer, Watson, and Drews (2011) emphasized
cognitive sources of distraction to distinguish them from visual
and manual components, which all contribute to overall workload.
They argued that divided attention, such as when driving and
talking on a cell phone, decreases performance in both tasks
largely due to the cognitive component of workload.

Although robust, the precise cause of cognitive workload’s
effect on performance under divided attention is less well under-
stood. On the one hand, declines in performance may stem from
reductions in the efficiency of information processing, perhaps due
to a competition for a limited pool of resource (i.e., cognitive
capacity). On the other hand, declines in performance may reflect
a bias to more conservative responding under higher cognitive
workload (i.e., response caution). Though it is often difficult to
distinguish between these alternative interpretations, this distinc-
tion has important implications for theories of attention in complex
multitasking situations. In the former, the rate of information
processing is slowed by multitasking. In the latter, the threshold
amount of information required for decisions is increased by
multitasking. Given the ubiquity of multitasking in modern soci-
ety, this distinction also has important real-world consequences.

For example, the National Highway Traffic Safety Administra-
tion (NHTSA) found that at any given time, over 10% of drivers
are using a cellular device (National Highway Traffic Safety
Administration [NHTSA], 2016). Although NHTSA (2012, 2016)
guidelines currently cover only visual and manual sources of
distraction, Klauer et al. (2014) demonstrated that deficits in
attention—largely caused by the cognitive workload required to
drive and perform secondary tasks such as using a mobile device—
are a leading factor in the majority of crashes and near-crashes.
Castro (2017) demonstrated that mobile devices of different sizes,
whether they are handheld or mounted, differentially affect atten-
tion to changes beyond the device. Depending upon the specific
mechanisms underlying cognitive workload’s impact on crash risk,
studies measuring cognitive workload may recommend different
solutions to ameliorate these risks. If cell phone use impacts the
rate of information a driver is capable of processing, then strategies
and policies that optimize a driver’s allocation of limited resources
to the road are warranted. However, if drivers change their behav-
ior by requiring more information from their environment before
making decisions, then perhaps updated driver training may be
recommended to decrease decision time. Of the two outcomes,
previous research would seem to support theories of limited re-
sources and deficits resulting from the rate of information process-
ing; however, this assumption has yet to be rigorously evaluated.

Theoretical models of human psychological-performance limi-
tations stem largely from research on the role of attention in
goal-directed behavior. Kahneman (1973) described voluntary,
goal-directed attention as a finite capacity that limits information
processing speed. In resource theories (e.g., Navon & Gopher,
1979), capacity is shared among tasks operating in parallel, with

the processing rate for each proportional to its attention allocation.
In single-channel bottleneck theories (e.g., Welford, 1952) atten-
tion is interleaved, switching in an all-or-none manner among
tasks, with each task’s average processing rate proportional to the
attention it receives. This theory has been applied to driving using
Welford’s (1952) psychological refractory period (PRP) paradigm.
Levy, Pashler, and Boer (2006) demonstrated that the PRP is
evident in the driving context by demonstrating slowed brake
response times (RTs) when occurring shortly after an auditory
discrimination stimulus. The researchers varied the stimulus onset
asynchrony between the auditory stimulus and requiring the par-
ticipant to brake, showing that brake RT increased with shorter
stimulus onset asynchronies. This paradigm demonstrates that
dual-task performance leads to serial processing of discrete stimuli
and responses. However, it has a somewhat limited application to
driving, which can be categorized as a slightly automated, cogni-
tively demanding continuous task. The potentially distracting sec-
ondary tasks provide intermittent dual tasking, but they occur in
parallel with the primary continuous task of driving. PRP designs
require two discrete responses and do not seem to be the best
candidate for measuring ongoing driving performance decrements
induced by cognitive workload. Their secondary tone task should
be sufficient to predict any driving performance issues and would
be sufficient with the approach outlined in this article. In both
theories, attention-degrading secondary tasks produce a load that
detracts from primary-task performance. Strayer and Fisher (2016)
argued that load induced by cognitive sources of distraction in
driving account for failures to notice objects in the fovea (Strayer
& Drews, 2007), increased brake RT (Caird, Willness, Steel, &
Scialfa, 2008), failures to stop at intersections (Strayer et al.,
2011), and decreased visual scanning (Taylor et al., 2013).

The detection response task (DRT) was developed by the Inter-
national Standards Organization (ISO) to measure the potentially
lethal and difficult to quantify cognitive workload effects of sec-
ondary tasks (International Organization for Standardization
[ISO], 2015). It provides a simple measurement of cognitive
workload that directly correlates with good driving performance
(Strayer et al., 2015), retrospective subjective workload measures
(Hart & Staveland, 1988), and electrophysiology (Strayer et al.,
2015). The DRT requires a button press in response to an easily
detected stimulus that occurs randomly every 3–5 s. Increased
secondary-task load causes slowing in DRT RT and/or an in-
creased response omission rate (Castro, Cooper, & Strayer, 2016;
Cooper, Castro, & Strayer, 2016; Strayer, Biondi, & Cooper,
2017). Recently, the NHTSA has taken note of the DRT’s efficacy
and practicality and plans to incorporate it into their Driver Dis-
traction Guidelines (Ranney, Baldwin, Smith, Mazzae, & Pierce,
2014).

ISO/DIS 17488 (ISO, 2015) claimed that with appropriate ap-
paratus (i.e., stimuli and responses that do not overlap with other
tasks), the DRT has only minimal effects on driving. The typical
DRT manipulation employed by researchers consists of baseline
driving (driving � DRT) and then driving with a secondary task
(driving � DRT � secondary task). This experimental design
enables comparisons that quantify the cognitive workload of the
secondary task but do not directly address the DRT’s impact on
driving performance. Previous studies have found mixed results
for the effect of the DRT alone on driving (e.g., Ranney et al.,
2014; Strayer et al., 2015). Castro et al. (2016) developed a
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simulated steering task that allows more sensitive measurement
and concluded that there is a small effect of the DRT. Although
this effect is usually inconsequential for real driving performance,
it is theoretically important, as it is consistent with the idea of
capacity sharing between the DRT and other tasks.

Even though it is increasingly adopted as a standard for making
critical judgments, such as deciding how to instrument cars and
rank their safety (Strayer et al., 2015), validation of the DRT has
been mostly empirical, with only a few investigations of its theo-
retical underpinnings (Ratcliff & Strayer, 2014; Tillman, Strayer,
Eidels, & Heathcote, 2017). Given the importance of assessing
cognitive workload and the allocation of attention in a wide variety
of dynamic environments, understanding what the DRT is mea-
suring is important in both basic and applied contexts. We ex-
panded this line of research using the DRT and evidence-
accumulation modeling. Evidence-accumulation modeling is a
theoretical framework that has been successfully applied to under-
stand speeded responding in a wide range of choice tasks that
require the selection of a set of two or more response options
(Brown & Heathcote, 2008; Leite & Ratcliff, 2010) and, less
widely, to simple tasks like the DRT requiring only one response
(e.g., Ratcliff, 2015). For both simple and choice tasks, this frame-
work assumes an initial encoding stage that extracts evidence from
a stimulus. Next, an accumulation stage accrues evidence until it
reaches a threshold amount, at which point a final response-
production stage is initiated. RT equals the time to reach threshold
(decision time) plus nondecision time, which is the sum of encod-
ing and response production times.

Evidence-accumulation modeling allows for a more fine-
grained representation of the mechanisms underlying the impacts
of secondary tasks on driving, and thus can improve the validity of
DRT studies. In particular, these models incorporate parameters
representing the rate of information processing (i.e., drift rates),
lower level perceptual and motor influences (i.e., nondecision
times) and higher order strategic caution and bias processes (i.e.,
response thresholds). A variety of evidence-accumulation models
have been proposed that although sharing a set of core assumptions
and parameters, differ in some details. We employed two different
models, the linear ballistic accumulation (LBA; Brown & Heath-
cote, 2008) and Wald (Leite & Ratcliff, 2010) models, to check if
these differences in detail influenced the inferences we made about
underlying mechanisms based on their core parameters. We found
that both models led to the same conclusions and we focus on the
Wald model here. It provided a slightly better model of our data
and it has been more often used with the DRT, so it better supports
comparisons to previous results. LBA results are reported in the
online supplemental materials.

Figure 1 illustrates an evidence-accumulation model of the
DRT, where the evidence total (dashed line) is stochastic (i.e.,
varying from moment-to-moment) and increasing at a mean rate v
toward a threshold b. This is called a Wald model because,
assuming infinitesimal Gaussian moment-to-moment variability,
the distribution of decision times follows a positively skewed
Wald distribution, which in combination with a shift (nondecision
time) parameter provides a good description of simple RT (Heath-
cote, 2004). It can be extended to model choice tasks by having an
accumulator independently gathering evidence for each option,
with the first to reach its threshold causing the corresponding
response to be selected (Leite & Ratcliff, 2010).

Given that cognitive workload is thought to affect the rate of
information processing, it naturally maps to evidence-accumulation
rate parameters. However, Heathcote, Loft, and Remington (2015)
demonstrated in the domain of prospective memory—which was
thought to slow performance of a primary or ongoing task because
of capacity sharing with a monitoring process required to achieve
a prospective-memory goal—that slowing of task performance
stemmed primarily from individuals delaying ongoing responses to
make it less likely that they preempted the response required by the
prospective-memory goal. This conclusion called into question
prevailing limited-capacity theories of prospective memory (see
also Strickland, Loft, Remington, & Heathcote, 2017).

In the domain of cognitive workload, it is possible that effects
are mediated by threshold changes and/or changes in a number of
other factors. Increased cognitive workload may slow early per-
ceptual encoding, and hence nondecision time, or even cause
failures to encode evidence from the stimulus, and hence response
omissions. Previous studies of perceptual choice tasks claim that
visual-attention-load effects are reflected in accumulation rates
(Eidels, Donkin, Brown, & Heathcote, 2010). Schmiedek, Ober-
auer, Wilhelm, Süss, and Wittmann (2007) correlated individual
differences on a variety of tasks (e.g., working memory, reasoning,
and psychometric speed) and evidence-accumulation rates in ver-
bal, numeric, and spatial choice paradigms as reflecting attention
capacity as well. Cognitive workload may also affect the quality of
evidence, which is inversely proportional to the level of noise
in evidence; in choice tasks, it is directly proportional to the
difference between evidence for the different options. Lower qual-
ity evidence can result in choice errors unless evidence is collected
for a longer time, and so may indirectly cause slowing if partici-
pants raise their threshold to maintain accuracy (i.e., a speed–
accuracy trade-off).

In tasks like the DRT where there is only one response, higher
noise in evidence associated with reduced attention may also cause
false detection responses (e.g., due to moment-to-moment fluctu-

Figure 1. The Wald evidence-accumulation model for the detection re-
sponse task. Note the dashed evidence accumulation path is a caricature
and would in reality vary more rapidly. RT � response time.
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ations that occur even when no stimulus is present), and so again,
participants may have to set larger thresholds with the increased
cognitive workload. Alternatively, higher thresholds may reflect a
general tendency to be more cautious when making responses in
more demanding situations (Strickland et al., 2017; Tillman et al.,
2017). Consequently, it is an open question as to which aspects of
information processing are altered under divided attention and
exactly what aspects of information processing are being measured
by the DRT methodology.

Experiment

Cognitive workload effects are prototypically measured in dual-
task paradigms, by contrasting primary-task performance between
conditions with and without a secondary task that is attention
demanding, but which does not overlap with the primary task
regarding perceptual and motor components. We performed such a
dual-task experiment with eight conditions (see Table 1), with a
driving-like primary task (Castro et al.’s, 2016, steering task)
common to all. In four of the eight conditions, participants also
performed a secondary task of counting backward by threes. The
four conditions with a secondary task and four conditions without
a secondary task differed in the same way with respect to require-
ments related to the DRT. In a baseline condition there was no
DRT, and so no cognitive workload measurement was taken. In a
second condition, cognitive workload was measured with a typical
ISO DRT to a bright light. In a third condition, the DRT used a
dimmer light, and in a fourth condition cognitive workload was
measured with a choice version of the DRT, where participants had
to press one of two buttons to indicate whether the light was dim
or bright. We hypothesized that the secondary-task load would
slow DRT responding and increase errors (i.e., missed responses
and also incorrect responses in the choice DRT). From past work
on visual workload and individual differences, we hypothesized
that the secondary task would reduce evidence accumulation rates
in the DRT, and also increase thresholds and nondecision times.

Method

Participants

After Institutional Review Board approval, 20 participants
(17–28 years old, M � 20.2) were recruited via psychology
courses at the University of Utah (10 male, 10 female) and were
compensated for class credit upon completion of two 2-hr sessions
on different days. All reported normal visual acuity and normal

color vision. Each participant completed a large number of trials
per condition as this, and not the number of participants, was
critical for parameter estimation (see online supplemental materi-
als for parameter recovery, showing that we had adequate sample
size and data quality).

Materials

A 101.6-cm Samsung LCD (1920 � 1080 pixels) was used to
display the pursuit-tracking task (see Figure 2). Participants uti-
lized a steering wheel from a driving simulator to track a ball that
moved continuously on the screen with a triangle cursor (see
Figure 2A). The ball had a diameter of 20 pixels (�0.96 cm),
which was the same length as the sides of the equilateral triangle
cursor. The steering wheel updated the location of the cursor
through a Yumo Corporation E6A2-CW3C Rotary Encoder from
Sparkfun Electronics set to sample the position at 30 Hz. The DRT
device presented a dash-mounted light at two intensities of red (see
Figure 2B). Stimuli were presented randomly every 3–5 s and
responses were made by pressing one of two microswitches at-
tached to participants’ left and right thumbs.

Design

The pursuit-tracking task was created to simulate steering on a
moderately curvy road. Participants were instructed to maintain the
cursor as close as possible to a ball that moved horizontally across
the screen at a slow constant rate of 100 pixels/s (see Figure 2A).
As the ball approached the edge of the screen, it became more
probable that the ball would reverse direction and maintain its
constant movement in the other direction. The probability of the
ball’s location followed a normal distribution centered on the middle
of the screen, so that, for example, the ball moved smoothly through
the center third of the screen (corresponding to one standard deviation
either side of the middle) approximately 68% of the time, and the
center two thirds approximately 95% of the time (corresponding to
two standard deviations either side of the middle).

There were four pursuit tracking conditions: single-task tracking
(i.e., DRT absent), and tracking while concurrently making a
detection response to the onset of a low-intensity (i.e., dim) light,
a high-intensity (i.e., bright) light, or a choice response to a dim
versus bright light (see Table 1). These conditions were crossed
fully with a cognitive workload (i.e., load) manipulation of either
counting backward by threes (i.e., load present) or not counting (i.e.,
load absent; see Table 1). The 4 � 2 factorial design was blocked into
64 runs, each 1 min long, and counterbalanced using a balanced

Table 1
Dual-Task 4 (Detection Response Task [DRT] Stimulus Type) � 2 (Cognitive Workload)
Experimental Design

Cognitive workload

DRT type

DRT absent

Simple

ChoiceBright light Dim light

Absent DRT absent DRT bright DRT dim DRT choice
Load absent Load absent Load absent Load absent

Present DRT absent DRT bright DRT dim DRT choice
Load present Load present Load present Load present
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Latin-square design. Participants were given 30 s of rest between each
block. Apart from single-task tracking (i.e., DRT absent), there were
an average of 240 DRT trials for each cell of the design.

Choice Difficulty Calibration

Before the experiment, the lights were calibrated so that each
participant was approximately 75% accurate in their choice
classification based on calibration algorithms proposed in Mac-
millan and Creelman (2005). The ISO DRT has an LED bright-
ness range from 0 (off) to 255 (brightest; ISO, 2015). We
initially set the values of the bright and dim lights to 200 and
100, respectively. Participants made sets of eight choice re-
sponses; then the dim light was changed by the proportion
correct multiplied by a weight that decreased for each set of 8
responses from 150% toward 0% in progressively smaller
amounts (see Figure 3). When participants scored below 75%
the light difference was increased by the weighted amount.
Participants proceeded to the main experiment when 75% ac-
curacy was achieved for three consecutive blocks, with light
intensities after that remaining fixed.

Measures

RT to the dashboard light was recorded to the nearest millisec-
ond. RTs shorter than 150 ms and trials with two or more re-
sponses were excluded from the analyses (0.78%). Also, blocks
with fewer than eight presented DRT trials over the course of a
1-min block were removed (1.2%), as were blocks with lower than
50% accuracy, or lower than 50% responses (0.76%, 0.09%,
respectively). The root mean squared error (RMSE) of the pursuit-
tracking task was computed from differences between the position
of the cursor and the target sampled at 30 Hz. The RMSE was
calculated with the following formula:

RMSE ���i�1
n (y�i � yi)

2

n ,

where the sum is of 1 to n observations (i.e., �1,780) taken over the
course of an �1-min block of the lateral position of the cursor (y�)
minus the position of the target (y) in each 30th-of-a-second interval.
The pursuit-tracking task failed to record for three participants, re-

sulting in a loss of data. Any RMSE tracking error recorded 3 SD
above the individual participant’s mean was also removed (1.20%).

Results

All analyses used R (R Core Team, 2016).1 We first report con-
ventional analyses of tracking error, the proportion of omissions,
accuracy, and mean RT using the lme4 package (Bates, Maechler,
Bolker, & Walker, 2015). Table 2 describes which measures were
available in each condition. Participants were included as a random
effect, and we used Type II Wald chi-squared tests. We report 95%
confidence intervals (CIs) in square brackets. Table 3 contains a
summary of omissions, accuracy, and RT-mean comparisons.

Pursuit Tracking Measures

Cognitive workload. Collapsing across DRT types, RMSE
steering error was greater for the load-present condition (M �
2.23, 95% CI [2.21, 2.24]) than the load-absent condition (M �
2.16, 95% CI [2.14, 2.17]), �2(1) � 157.92, p � .001.

DRT type. Collapsing across the cognitive workload manip-
ulation, we performed pairwise comparisons of the four DRT types
to their closest performer. The bright (i.e., ISO standard) DRT
increased steering error (M � 2.15, 95% CI [2.14, 2.17]) over the
single-task condition (i.e., DRT absent; M � 1.97, 95% CI [1.96,
1.99]), t(16) � 3.83, p � .001, 95% CI [.08, .28], but had a
significantly smaller steering error than the dim DRT condition
(M � 2.22, 95% CI [2.20, 2.23]), t(16) � 4.58, p � .001, 95% CI
[.03, .09]). The choice DRT (M � 2.38, 95% CI [2.36, 2.39])
significantly increased steering error over the dim DRT condition
as well, t(16) � 3.65, p � .002, 95% CI [.06, .24].

Additionally, the average size of the load effect across the
simple DRTs (i.e., bright and dim DRTs) did not differ signifi-
cantly from the load effect in the DRT-absent condition, t(16) �
0.75, p � .46, 95% CI [�.09, .22], but the load effect with the
addition of the choice task was significantly smaller, t(16) � 2.80,

1 We have provided our dataset, analyses, and our custom software as a
public project on the Open Science Framework (https://osf.io/e8kag/). We
have provided a template for future modeling of cognitive workload
measurements with the models used within this repository.

Figure 2. (A) Simulator used to display the pursuit-tracking task using the steering wheel and center screen.
Participants control the triangle in an attempt to keep its lateral position equivalent to the circle’s lateral position.
(B) Dash-mounted detection response task (DRT) for displaying the dim and bright simple DRT, and choice
DRT, stimuli. See the online article for the color version of this figure.
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p � .005, 95% CI [.07, .28], driving an interaction between load
and the addition of different DRTs, �2(3) � 14.75, p � .002, 95%
CI [.02, .10] (see Figure 4).

DRT Measures

DRT measures came from the bright and dim simple DRT, and
choice DRT types. For our analyses, these DRT types were some-
times grouped as simple (bright, dim) versus choice. These mea-
sures include the percent of omissions, (i.e., failures to respond
within 3 s after stimulus presentation), RT, and the percent of
correct light discriminations in the case of the choice task (see
Table 2).

Omissions. We combined data from the bright and dim DRTs
to make a 2 (DRT Type) � 2 (Cognitive Workload) design. For the
simple DRTs, omission rates were lower when in the load-absent
condition (M � 4.30%, 95% CI [3.70, 4.89]) than the load-present
condition (M � 5.96%, 95% CI [5.24, 6.67]), �2(1) � 18.66, p �
.001. Neither the effect of stimulus type, nor its interaction with
load, was significant. For the same design—but replacing the
simple conditions with the two-alternative choice task—load also

significantly affected omission rates, �2(1) � 36.64, p � .001.
Participants failed to respond more often in the load-present con-
dition (M � 3.60%, 95% CI [2.73, 4.47]) than when in the
load-absent condition (M � 1.31%, 95% CI [.80, 1.83]), but
neither the effect of stimulus type, nor its interaction with load,
was significant. The increase in omissions due to load was signif-
icantly greater for the choice (2.00%, 95% CI [1.57, 3.01]) than the
simple DRT (1.10%, 95% CI [.96, 2.36]), �2(1) � 10.62, p � .001
(see Figure 5).

Response time. We again combined data from the two simple
DRTs to make a 2 � 2 design and transformed the RT data to the
log scale for analysis, but report means on the seconds scale (see
Figure 6). Participants responded 0.146 s slower in the load-
present condition (M � 0.622 s, 95% CI [.614, .631]) than the
load-absent condition (M � 0.479 s, 95% CI [.472, .483]), �2(1) �
1711.95, p � .01. The main effect of stimulus was also significant,
�2(1) � 37.43, p � .001, but participants were only 0.018 s slower
for the dim stimulus (M � 0.555 s, 95% CI [.546, .561]) compared
to the bright stimulus (M � 0.539 s, 95% CI [.529, .543]). The two
effects did not interact significantly.

In the choice DRT, participants responded 0.098 s slower in the
load-present condition (M � .966 s, 95% CI [.951, .980]) than in
the load-absent condition (M � .868 s, 95% CI [.856, .881]),
�2(1) � 230.49, p � .001. The main effect of stimulus was again
significant, �2(1) � 5.64, p � .018, but small—0.019 s slower for
the dim stimulus (M � .923 s, 95% CI [.909, .937]) compared
to the bright stimulus (M � .904 s, 95% CI [.891, .917])—and
again the two effects did not interact significantly. We also found
that participants were 0.049 s slower overall on error trials (M �
.951 s, 95% CI [.929, .973]) compared to correct trials (M � .902
s, 95% CI [.891, .912]), �2(1) � 34.04, p � .001.

Overall, the simple DRT was much quicker than the choice DRT
(M � .545 s, 95% CI [.540, .550] vs. .913 s, 95% CI [.904 0.923]),
�2(1) � 212.00, p � .001, and the increase in mean RT due to load

Table 2
Presence (�) of Dependent Variables for the Different
Detection Response Task (DRT) Types

Dependent
variable

DRT type

DRT absent

Simple

ChoiceBright light Dim light

Pursuit tracking � � � �
Omissions � � �
Response time � � �
Choice accuracy �

Figure 3. Following Figure 11.6 of Macmillan and Creelman (2005), a calibration procedure of 13 steps for
a hypothetical participant. The weight decreases according to the inverse power law f(x) � Cx�1/2, where C is
a constant truncating the weight at 150%, and x corresponds to the step number. The percentages refer to the
accuracy averaged over eight trials.
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was significantly greater for the simple (M � .151 s, 95% CI [.140,
.162]) than the choice (M � .102 s, 95% CI [.088, .116]) DRT,
�2(1) � 212.13, p � .001.

Choice accuracy. Participants were more accurate in the load-
absent condition (M � 77.40%, 95% CI [75.48, 79.27]) than in the
load-present condition (M � 74.60%, 95% CI [72.15, 76.70]),
�2(1) � 9.28, p � .002, but neither the effect of stimulus type, nor
its interaction with the load effect, was significant (see Table 3 for
a summary).

Discussion

In summary, the RMSE tracking error and RT measures exhib-
ited an increase with cognitive workload and DRT difficulty, but
the cognitive workload difference was smaller for the choice DRT.
With the addition of the choice DRT, both responses to the DRT
and RMSE tracking error were less affected by the cognitive
workload manipulation. Accuracy in the choice DRT also de-
creased with load.

We now use evidence-accumulation modeling to understand the
underlying causes of the behavior we observed. We first introduce the
model in a general form that is able to account for the choice data,
with one accumulator corresponding to a dim choice and the other to

a bright choice that race independently. The model for the simple
DRT is a special case with only one accumulator. For both simple and
choice models, we add the possibility of variability in the starting
point of evidence accumulation (see Logan, Van Zandt, Verbruggen,
& Wagenmakers, 2014, for the mathematically equivalent case where
the variation is in the threshold).

Evidence-Accumulation Modeling

A major division among evidence-accumulation models is
whether they assume that accumulation is stochastic within a trial
(i.e., the amount added to the evidence total in each moment during
accumulation has a random component) or deterministic (i.e., the
amount added in each moment is a constant). We fit a model of
each type to the choice data, the deterministic LBA (Brown &
Heathcote, 2008) and the stochastic racing one-barrier diffusion
(Leite & Ratcliff, 2010) or Wald model, as illustrated in Figure 7.
Our initial fit of the Wald race model assumed that the starting
point of evidence accumulation varies from trial-to-trial according
to a uniform distribution, an assumption shared with the LBA. The

Table 3
Means and Standard Deviations for Stimulus Type � Cognitive Workload for the Simple and
Choice Tasks

Task
Dependent

variable
Stimulus
or load M SD p

Simple Omissions (%) Absent–present 4.6%, 6.2% 9.4%, 8.0% �.01
Bright–dim 5.4%, 5.3% 8.8%, 8.5% .40

Response time (s) Absent–present .48 s, .62 s .19 s, .21 s �.01
Bright–dim .54 s, .56 s .18 s, .20 s �.01

Choice Omissions (%) Absent–present 1.3%, 3.6% 1.1%, 3.4% �.01
Bright–dim 2.1%, 2.7% 1.8%, 2.4% .04

Response time (s) Absent–present .87 s, .97 s .15 s, .17 s �.01
Bright–dim .90 s, .92 s .16 s, .15 s .02

Accuracy (%) Absent–present 77.4%, 74.6% 6.2%, 6.5% �.01
Bright–dim 76.9%, 75.2% 11.8%, 8.8% .08

Figure 4. Root mean squared error (RMSE) for the tracking task. Error
bars are 95% confidence intervals around the mean utilizing the
Cousineau–Morey method (Baguley, 2012; Cousineau, 2005; Morey,
2008). DRT � detection response task.

Figure 5. Percent omissions (failures to respond) to detection response
task (DRT) stimuli. The size of the cognitive workload effect differed
between the simple DRTs (i.e., bright and dim) and the choice DRT. Error
bars are 95% confidence intervals around the mean using the Cousineau–
Morey method (Baguley, 2012; Cousineau, 2005; Morey, 2008).
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LBA differs from our Wald model in that the rate of evidence
accumulation is assumed to vary randomly from trial to trial rather
than from moment-to-moment within a trial. By fitting both mod-
els, we verified that the results are not dependent on specific
assumptions of either model. As the LBA fits produced essentially
the same conclusions we report details for the LBA in online
supplemental materials.

To identify the Wald model, we fixed the diffusion coefficient
(i.e., the standard deviation of the moment-to-moment variability)
at 1 and estimated the average rate of accumulation (v). One mean
rate was estimated for the accumulator that matched the stimulus
and a second, typically smaller, mean rate was estimated for the
mismatching accumulator. For example, Figure 7 illustrates a case
where the stimulus was dim and so the dim accumulator has a
higher mean rate than the bright accumulator. The starting point of
evidence accumulation was assumed to vary from trial to trial
independently for each accumulator according to a uniform distri-
bution on the interval from 0 to an estimated parameter A. We
parameterized each accumulator’s threshold (b) in terms of the gap
from the top of the start-point distribution, B � b – A 	 0, so
accumulation always began above the level of the start-point noise.
We estimated nondecision time, the sum of the times to encode the
stimulus and to produce a response, as parameter t0.

Participants sometimes failed to respond to the DRT, particu-
larly under increased load. One possibility is that this occurred
because their response was so slow that it did not occur before the
next DRT stimulus. However, for all participants in all conditions
we found the right tail of their RT distributions clearly terminated
well before the minimum interval between DRT stimuli of 3 s.
This makes it very unlikely that the omissions were due to an
ongoing decision process being cut off, at least if that decision
process is of the same type as the one that explains all of the
responses that were made. Therefore, we conceptualized response
omissions as either a perceptual failure to encode the stimulus,
akin to inattention blindness during distracted driving (Strayer &
Drews, 2007), or as a failure to sample evidence from the encoded
stimulus akin to the idea of “trigger failure” in models of the
stop-signal paradigm (Matzke, Love, & Heathcote, 2017; Matzke,
Hughes, Badcock, Michie, & Heathcote, 2017).

In particular, we adopted the standard evidence-accumulation
model assumption that, at the onset of the stimulus, information
transduction occurs through sensory processes that result in an
internal representation of the relevant evidence (Brown & Heath-
cote, 2008; Ratcliff & McKoon, 2008). Then, the evidence accu-
mulation process accesses this evidence. In the case of detection,
this evidence consists of a simple change of sufficient magnitude
in the attended sensory channel (Ratcliff & Van Dongen, 2011).
Encoding failure means that either the stimulus did not cause a
change of sufficient magnitude, or that it did, but the change was
not accessed by the evidence accumulation process. To account for
the probability of these failures we augmented the model with a
parameter, pf. The omission probability can be directly observed
and was clearly different between load conditions, and so pf was
assumed to vary with load in both models. Denoting the likelihood
of a response R at time t in the standard models with parameter
vector � as l(R,t|�), the corresponding likelihood in the augmented
model is (1-pf) X l(R,t|�), and the probability of an omission is pf.

In the following sections we report a series of analyses based on
fits of this model. We first report how several parameterizations of
the model were fit to the simple DRT data and to the choice DRT

Figure 6. Response time for the average of simple detection response
task (DRT) conditions and the choice DRT. Error bars are 95% confidence
intervals around the mean using the Cousineau–Morey method (Baguley,
2012; Cousineau, 2005; Morey, 2008).

Figure 7. The Wald race model for the choice detection response task
(DRT) with a dim stimulus and hence a higher rate for the matching (dim)
accumulator than the mismatching (bright) accumulator. Note the dashed
evidence accumulation paths are a caricature and would in reality vary
more rapidly. RT � response time.
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data. Tables 4 and 5 report the results of analyses that enable
selection of the best parameterization for each task type. We then
report analyses of the parameters of the selected models, and of
follow-up model selection and parameter analyses that allow us to
identify the relative influence of each type of model parameter in
explaining load effects. Finally, we look at the relationship be-
tween model parameters and tracking error.

Model Estimation and Selection

Model estimation was carried out in a Bayesian manner using
the differential evolution algorithm (Turner, Sederberg, Brown, &
Steyvers, 2013). Priors and sampling methods are described in the
online supplemental materials. Sampling occurred in two steps. In
the first step, sampling was carried out separately for individual
participants. The results of this step provided the starting points for
sampling the full hierarchical model, whose results are reported
here (see Heathcote et al., 2018). Because we were primarily
interested in the effects of cognitive workload, for both simple and
choice DRTs, we estimated separate threshold (B), mean rate (v),
nondecision time (t0) and omission probability (pf) parameters for
load-present and load-absent conditions, requiring a total of eight
parameters. We fit the data for the two simple DRTs simultane-
ously, assuming the same nondecision time and omission proba-
bility parameters, but allowing different mean accumulation rates
for the dim and bright stimuli for a total of four estimated mean
rate parameters (dim and bright stimuli in load-present and load-
absent conditions), and different boundaries, for a total of four
estimated threshold parameters (i.e., dim and bright accumulators
in load-present and load-absent conditions). For the choice DRT
there were also four threshold parameters (allowing for response
bias through different dim and bright accumulator boundaries in
each of the load-present and load-absent conditions) but eight
mean rate parameters, four for the matching accumulator (for dim
and bright stimuli in load-present and load-absent conditions) and
a corresponding four parameters for the mismatching accumulator.

We also compared three models that differed on whether start
point noise (see Figure 7) was assumed to either be absent (i.e.,
A � 0), the same for all conditions and accumulators, or the same
for all conditions but different between accumulators. Start point
variability was selected for the simple DRT task, but not for the
choice task. This outcome suggests that in the simple task partic-
ipants prematurely sample evidence before the light appears,
whereas the choice task they only sample evidence discriminating
the choice after they detect the onset of the light (see the online
supplemental materials for further discussion).

Comparison of 14 Wald Simple Detection Models

We refit the selected model (i.e., with start-point noise and with
load effects on the probability of omission, rates, thresholds and
nondecision time) and six variants that dropped one or two effects
of load (except pf, which always varied with load) with the lower
bound on nondecision time set to 0.05 s, but otherwise used the
same priors as the initial fits. We did this also with the same set of
seven models except we fixed start-point nose at zero. We used the
same conventions to designate models: the most complex model,
Bvt0, has 13 parameters with start-point noise and 12 without. With
start-point noise, the three further models dropped the load effect
from one parameter, vt0, Bt0, and Bv, had 11, 11, and 12 param-
eters, respectively, and one less each without start-point noise.
Similarly, the final three models had a load effect on only one
parameter, B, v, and t0, had 10, 10, and nine parameters, respec-
tively, and one less each without start-point noise.

As shown in the online supplemental materials, our results were
consistent with the parameter analyses reported below in confirm-
ing load effects on all three parameters to be reliable (i.e., all
models that dropped one or more effect were worse), both with and
without start-point noise. We compared models utilizing the De-
viance Information Criterion (DIC), which is a generalization of
the Akaike Information Criterion for hierarchical models and is
particularly useful for comparing models generated by Markov
Chain Monte Carlo (MCMC) simulation (Spiegelhalter et al.,
2002). The DIC for the selected model was very similar to the
initial fit of this model, and analyses of parameter replicated a very
similar pattern of p values.

Comparison of Seven Wald Choice Models

We again refit the selected model (i.e., with no start-point noise
but with load effects on the probability of omission, rates, thresh-

Table 5
The Difference Between DIC and the DIC for the Best (Bvt0)
Model (DIC � 10,483) and Corresponding Model Weights for
the Set of Seven Models

Unit of measurement Bvt0 Bv Bt0 vt0 B v t0

DIC difference 0 14 23 23 45 69 162
Model weight .9991 .0009 0 0 0 0 0

Note. The Deviance Information Criterion (DIC) is used to compare
Bayesian Hierarchical Models as described in Spiegelhalter et al. (2002).

Table 4
The Difference Between DIC and the DIC for the Best (Bvt0 With Start-Point Noise) Model
(DIC � �3,599) and Corresponding Model Weights for the Set of 14 Models

Start-point comparison Unit of measurement Bvt0 Bv Bt0 vt0 B v t0

Start-point noise DIC difference 0 193 316 483 855 957 2,553
Model weight .9988 0 0 0 0 0 0

No start-point noise DIC difference 14 194 244 507 866 965 2,578
Model weight .0012 0 0 0 0 0 0

Note. The Deviance Information Criterion (DIC) is used to compare Bayesian Hierarchical Models as
described in Spiegelhalter, Best, Carlin, and Van Der Linde (2002).
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olds and nondecision time) and 6 variants that dropped one or two
effects of load (except pf, which always varied with load). To
check the robustness and generality of our initial results all refits
reduced the lower bound on nondecision time to 0.05s, but other-
wise used the same priors as the initial fits. We denote models by
parameters that vary with load, so the most complex model is Bvt0.
Three further models dropped the load effect from one parameter:
vt0, Bt0, and Bv, with 14, 12, and 15 parameters, respectively. The
final three models had a load effect on only one parameter, B, v,
and t0, with 11, 13, and 10 parameters, respectively.

As shown in the online supplemental materials, our results were
consistent with the parameter analyses reported below in confirm-
ing load effects on all three parameters to be reliable (i.e., all
models that dropped one or more effect were worse than the most
complex Bvt0 model). The sizes of the reductions in DIC suggest
the nondecision time effect was least important, with the rate and
threshold effects being equally important. The DIC for the model
with all three effects was very similar to the initial fit of this model,
and analyses of parameter replicated a very similar pattern of p
values.

Parameter Tests

We report results about parameter estimates as posterior medi-
ans with 95% credible intervals given in square brackets and focus
on the effects of load using Bayesian p values to test differences in
parameters between conditions (e.g., Klauer, 2010; Matzke, Dolan,
Batchelder, & Wagenmakers, 2015; Matzke et al., 2017 ; see the
online supplemental materials for computational details). This p
value is directly interpretable as the probability that one parameter
is greater than another for the sample of subjects, so that a
difference can be indicated by small or large p. However, given the
familiar convention of low p values supporting a difference, we
report the tail area such that small values are consistent with the
stated effect direction.

Simple DRT. The response omission parameter (pf) was
1.1%, 95% CI [.37, 1.79] higher (6.1%, 95% CI [5.6, 6.6] vs. 5.0%,
95% CI [4.51, 5.50], p � .002), and nondecision time (t0) was
0.023 s 95% CI [.013, .032] faster (0.152 s, 95% CI [.145, .158] vs.
0.175 s, 95% CI [.168, .180], p � .001) in the load-present
condition than in the load-absent condition. The response threshold
(b) was higher in the load-present than load-absent condition for
both bright blocks (by 0.31, 95% CI [.25, .36]: 1.13, 95% CI [1.08,
1.18] vs. 0.83, 95% CI [.78, .87], p � .001) and dim blocks (by
0.39, 95% CI [.33, .44]: 1.20, 95% CI [1.15, 1.24] vs. 0.81, 95%
CI [.77, .86], p � .001). The mean rate was clearly lower in the
load-present than the load-absent condition for both bright blocks
95% CI [.43, .69] (3.32, 95% CI [3.21, 3.44] vs. 2.80, 95% CI
[2.68, 2.85], p � .001) and dim blocks 95% CI [.06, .29] (2.91,
95% CI [2.81, 2.99] vs. 2.72, 95% CI [2.64, 2.81], p � .001).

Choice DRT. The proportion of response omissions was
2.1%, 95% CI [1.41, 2.81] higher (3.4%, 95% CI [2.90, 4.00] vs.
1.3%, 95% CI [1.03, 1.71], p � .001), nondecision time was 0.031
s, [.012, .051] faster (.218 s, 95% CI [.201, .227] vs. 0.249 s, 95%
CI [.234, .263], p � .001), and the average response threshold was
0.27, 95% CI [.200, .344] higher (2.1, 95% CI [2.06, 4.15] vs. 1.83,
95% CI [1.77, 1.89], p � .001) in the load-present condition than
in the load-absent condition. The mean rate for the matching
accumulator was clearly lower 95% CI [.06, .24] in the load-

present condition (2.32, 95% CI [2.26, 2.38] vs. 2.46, 95% CI
[2.40, 2.53], p � .001), whereas the mismatching rate was a little
higher 95% CI [.003, .21] in the load-present condition (1.34, 95%
CI [1.27, 1.40] vs. 1.23, 95% CI [1.16, 1.31], p � .02), so the
difference between match and mismatch rates was much smaller
95% CI [.15, .35] for the load-present condition than the load-
absent condition (0.98, 95% CI [.91, 1.05] vs. 1.23, 95% CI [1.16,
1.30], p � .001).

Simple versus choice. We also compared the size of the
selected models’ load effects in simple and choice DRTs. There
was no support for a decrease in the nondecision time load effect
for simple compared to choice DRT (M � .008 s, p � .23, 95% CI
[�.03, .013]). However, there was some support for a larger
threshold effect in the simple DRT (M � .073, p � .05, 95% CI
[�.015, .16]) and strong support for a larger rate effect (M � .226,
p � .001, 95% CI [.096, .35]).

The Underlying Causes of Load Effects

We used model selection to further test the necessity of rate,
threshold and nondecision time effects in accounting for perfor-
mance in both the simple and choice DRT (see online supplemen-
tal materials for details). For the choice DRT we fit six simplifi-
cations of the selected models that removed the load effect on one
or more parameters, and we compared the models using DIC. The
analyses confirmed the results of the Bayesian p value analyses,
selecting the model allowing for load effects on accumulation
rates, thresholds and nondecision time. We repeated this exercise
for the simple DRT, using models both with and without start-
point variability, and both confirmed the need for all three causes
of the load effect and for the need for start-point noise.

We performed further analyses on the selected models to pro-
vide a more fine-grained quantitative understanding of the impor-
tance of each parameter in explaining the effects of load on speed,
and for the choice DRT on accuracy. This is fairly straightforward
for nondecision time, because it exclusively affects mean RT. In
both simple and choice DRT the increased RT under load due to
both higher thresholds and lower accumulation rates was masked
somewhat by nondecision time, which decreased under load. In the
simple DRT, it reduced the underlying load effect (i.e., the effect
due to rate and threshold differences between load conditions) of
0.195 s by around 24% to the observed 0.148 s value. In the choice
DRT it reduced the underlying 0.141 s mean RT load effect by a
similar proportion, 22%, to the observed value of 0.11 s.

To quantify the effects of rate and threshold differences we
modified the posterior parameter estimates from the selected mod-
els in two ways. First, we set the threshold parameters for the
load-present and load-absent conditions to the same value, the
average of the freely estimated parameters in the selected models.
We then simulated data from this model and calculated the pre-
dicted load effects in mean RT and, for the choice data, in accu-
racy, enabling us to quantify the effect of the remaining rate
differences between load conditions. Second, we did the same but
with rate parameters for load-present and load-absent conditions
being set to their mean. Of the underlying 0.195 s simple DRT
mean RT effect, around 0.12 s (60%) was due to the higher
threshold in the load-present condition and the remaining 0.075 s
to mean rate differences.
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For the choice DRT, approximately the same length time, 0.12
s, but a larger proportion (85%) of the underlying 0.141 s under-
lying effect on mean RT was due to the threshold difference, with
the remaining 0.021 s due to differences in mean rate. For the
choice DRT, rate differences had a large effect on accuracy,
increasing it in the load-absent over the load-present condition by
5.65%. However, this difference in accuracy was reduced 1.9% by
the increase in threshold in the load-present condition, producing
the observed value of 3.75% greater accuracy in the load-absent
than the load-present condition.

Model Parameter and Pursuit Tracking Correlations

To relate steering performance and model parameter differ-
ences, we used plausible-value correlations (Ly et al., 2017). These
are a fully Bayesian way to test correlations between subject-level
covariates and hierarchical parameter estimates (the latter being
the “plausible values”). The parameters came from the selected
Wald models of both the choice and simple DRT, and the subject
covariates are RMSE steering error for each participant. This
analysis provides two sorts of estimates, and corresponding infer-
ential procedures, assuming either a fixed-effects approach with
inference specific to the sample of participants or a random-effects
approach appropriate for generalizing inference to a new sample of
participants. The latter approach provides a much more stringent
test and so we focus on it, with details of all results provided in
online supplemental materials.

We analyzed correlations between RMSE and the posterior
distributions of threshold (B), rate (v), omission rate (pf), and
nondecision time (t0) separately in the load-present and load-
absent conditions. For the choice model, we performed correla-
tions with B averaged across the dim and bright light accumulators,
with both the difference between matching and mismatching ac-
cumulator rates (as a measure of the quality of evidence), and with
the rate for the matching accumulator (which is most strongly
related to the speed of correct responses and most directly analo-
gous to the simple DRT rate). As for the previous modeling
methods, 95% credible intervals are given in square brackets.
Bayesian p values are based on the distribution of posterior pa-
rameter estimates of correlations with RMSE. To maintain the
convention that smaller p values support the existence of differ-
ences, we give the probability of a correlation being greater than
zero for negative correlations, and the probability of a correlation
being less than zero for positive correlations; a p near zero value
supports there being a strong negative or positive relationship and
a p value near .5 supports there being no relationship.

For the choice data there was a clear negative correlation be-
tween steering error and the rate for the matching accumulator in
the load-present condition, r(17) � �.61, 95% CI [�.86, �.24],
p � .003. The analogous correlation for the load-absent condition
was moderately large, but its 95% credible included zero,
r(17) � �.40, 95% CI [�.75, .05], p � .041. The same was true
for a negative correlation with the difference between match and
mismatch rates in the load-present condition, r(17) � �.41, 95%
CI [.78, .02], p � .031, and for a positive correlation with the
omission probability (pf) parameter in the load-present condition,
r(17) � .45, 95% CI [�.01, .77], p � .028. Correlations with
nondecision times and threshold were generally weak.

For the simple DRT a negative correlation with mean rate was
present with the dim stimulus for the load-present condition
r(17) � �.46, 95% CI [�.78, �.03], p � .021, analogous to the
results in the choice DRT. This correlation was weaker for the
bright (i.e., ISO standard) DRT, r(17) � �.38, 95% CI [�.73,
.07], p � .051. The same was true for those correlations in the
load-absent conditions for both the dim DRT, r(17) � �.42, 95%
CI [�.76, .03], p � .036, and the bright DRT, r(17) � �.41, 95%
CI [�.75, .04], p � .039. For the bright DRT the strongest finding
was a negative correlation with the nondecision time in the load-
absent condition, r(17) � �.45, 95% CI [�.77, �.01], p � .024.
The analogous correlation was of similar magnitude but a little
weaker for the dim DRT, r(17) � �.41, 95% CI [�.75, .03],
p � .035, as were the correlations with nondecision time in the
load-present condition for both the bright r(17) � �.36, 95%
CI [�.72, .09], p � .057, and dim r(17) � �.38, 95% CI [�.73,
.07], p � .051, DRTs. For both bright and dim DRTs correla-
tions with thresholds and omission probability were weak.

General Discussion

It is a fundamental characteristic of human cognition that divid-
ing attention between two or more tasks results in performance
decrements (i.e., slower and more error-prone behavior) compared
to when each task is performed separately. The ISO developed the
DRT (ISO, 2015) to assesses cognitive workload in a variety of
multitasking situations. DRT RT and omission rates are very
sensitive to increases in cognitive workload; however, the precise
reason is unclear. This sensitivity could be due to cognitive-
capacity-related changes in the rate of evidence accumulation, or
to a strategic adjustment in the threshold amount of information
required to trigger a response, changes in nondecision time (i.e.,
the time to encode a stimulus and to produce a response), or some
combination of these factors. These distinctions could meaning-
fully change the approaches to applications of studying cognitive
workload, such as alleviating driver distraction. For example,
approaches that target attention allocation from a limited-resource
perspective would be validated with a demonstration of rate ef-
fects. Threshold effects may call into question current assumptions
about cognitive workload, and subsequently shift focus toward
individual differences in strategic decision making. Increased non-
decision time effects would imply cognitive workload is mainly
due to early processing or subsequent motor interference. The
current research used formal modeling to identify the bases for
changes in DRT performance with increased cognitive workload.

We found that in both choice and simple DRTs the cognitive
workload induced by a secondary task of counting backward by
threes (while also performing a primary steering task) reduced
evidence accumulation rates. These results suggest that informa-
tion processing in choice and simple DRTs depends on the same
limited pool of attention capacity as the secondary task. To our
knowledge, this is the first direct confirmation that cognitive
workload, as traditionally measured by a dual-task methodology,
affects evidence accumulation rates. This finding was bolstered by
its consistency in two modeling frameworks: the shifted Wald
(Heathcote, 2004; Logan et al., 2014), and the LBA (Brown &
Heathcote, 2008, see online supplemental materials), and by its
consistency between the ISO DRT using a bright light and two
variants: either requiring detection of a dim light or requiring a
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binary choice between bright and dim lights. It confirms Strayer
and colleagues’ (Strayer et al., 2011, 2015) interpretation of cor-
relations between the DRT and effects of secondary tasks on
driving performance as being at least in part mediated by limited-
capacity attention.

These results support the dominant assumption that cognitive
workload effects reflect a competition for limited resources. Fur-
ther supporting the notion of capacity sharing, the choice DRT
clearly reduced performance in the pursuit-tracking task. This was
also true to a lesser degree for simple DRT using a dim light, with
the smallest, but still reliable, impact being produced by the ISO
DRT using a bright light. As well as confirming the notion that the
DRT draws on the same limited-capacity attention pool as the
primary and secondary tasks, it also confirms that the ISO DRT
with an easily detected stimulus is best suited to minimize the
impact of measuring cognitive workload during driving.

Increased cognitive workload also causes an increase in DRT
response omissions, that is, failures to respond to the present DRT
stimulus before the onset of the next DRT stimulus. It was clear in
our data that omissions were not simply due to slow responses
coming from the same process producing observed DRT re-
sponses, as the distribution of observed DRT responses terminated
well before the next stimulus appeared. We accounted for response
omissions by assuming a mixture of normal Wald evidence accu-
mulation processes and failures to encode the DRT stimulus. Our
results imply that this encoding failure process is sensitive to
cognitive workload.

Ratcliff and Strayer (2014) took a different approach to omis-
sions, using a Wald model, but assuming Gaussian trial-to-trial
variability that sometimes results in negative accumulation rates
and hence response omissions, because the accumulated evidence
cannot reach the positive threshold. However, this came at a cost.
The model has no closed-form likelihood, so had to be fit by slow
simulation-based methods. More importantly, it has problems with
parameter identification in the simple DRT, meaning it cannot
adjudicate whether a threshold effect, a rate effect, or both, medi-
ate slowing. We demonstrated our model does not suffer from the
same problems. In online supplemental materials we report exten-
sive parameter-recovery (Heathcote, Brown, & Wagenmakers,
2015) simulations, which show that the Wald model produces
quite accurate and precise estimates of parameters relevant to
cognitive workload effects with samples as small as 200 trials per
participant. This makes our model practical to apply to an ISO
DRT recorded over a duration as short as 15 min. These outcomes
increase the feasibility of applying evidence-accumulation model-
ing techniques to cognitive workload measurement in a wide range
of behavioral tasks for both laboratory and applied settings.

Contrary to our initial hypothesis, we found a small but reliable
decrease in nondecision time under cognitive workload. This may
have been compensatory in nature, slightly offsetting (by about
�20%) slowing due to threshold increases and rate decreases.
Palada, Neal, Tay, and Heathcote (2018) also found that high
cognitive workloads could sometimes be associated with reduced
nondecision time in a difficult choice task. They suggested that fast
nondecision times were associated with a degraded encoding. It is
possible that such a degraded encoding process might in part be
responsible for the reduced rate of evidence accumulation we
observed under cognitive workload (as a weakened stimulus en-
coding weakens the evidence on which the rate is based). How-

ever, for Palada et al. the decrease in nondecision time was more
extreme, it was associated with a drastic decrease in accuracy
specific to one type of choice response, and only occurred under
extreme time pressure that caused participants to run out of time to
respond to some of the multiple stimuli they had to respond to in
each display. Hence, further research is required to determine if the
same mechanism is in play in the very different task setup used
here.

We found a clear increase in both simple and choice DRT
thresholds due to a secondary-task workload. Tillman et al. (2017)
also found conversation on a hands-free cellphone caused an
increase in threshold in the Wald model of the ISO DRT. How-
ever, they did not find any effect of this secondary task on
accumulation rates or nondecision time, despite its well-
documented deleterious effects on a primary driving task. They
suggested their DRT slowing and threshold increase was an indi-
rect result of a general tendency to be more cautious when making
responses in more demanding situations. It seems likely that the
same mechanism may have been at play in our results. How-
ever, in contrast to Tillman et al., we found that a little less than
half of the slowing due to load was due to a decreased rate of
evidence accumulation in the simple DRT. In contrast, our
results in the choice DRT were more in line with theirs, with
threshold effects explaining the majority (�85%) of the slow-
ing, although even in this case we obtained clear evidence for
a reliable rate effect.

Once again, these results support the use of a simple DRT as
best for measuring cognitive workload, as it better reflects accu-
mulation rate effects that indicate a decrease in available attention
capacity that could affect driving performance. At a theoretical
level, the divergence between our results and those of Tillman et
al. (2017) clearly indicates slowing in the DRT is not by itself
sufficient to make inferences about underlying causes. Fortunately,
our model provides a practical and efficient way to make such
inferences in future research. We provide the software necessary to
do so through the Open Science Framework (https://osf.io/e8kag/).

Correlations between parameter distributions and pursuit
tracking error provided further evidence of a relationship be-
tween accumulation rates and driving performance. Accumula-
tion rates in choice and simple DRTs correlated negatively with
steering performance, whereas we did not find evidence to
support a correlation between thresholds and steering perfor-
mance. These results demonstrate a relationship between indi-
viduals with less cognitive capacity (as reflected in lower DRT
accumulation rates) having higher steering errors, particularly
under more demanding high-load conditions and with the more
demanding dim and choice DRTs. The weaker correlations for
the less demanding ISO DRT reinforce our finding that it has a
lesser impact on the steering task.

In summary, the DRT has been shown to be very sensitive to
dynamic changes in cognitive workload in a variety of multitask-
ing contexts (e.g., Strayer et al., 2017). Here, we have provided a
theoretical account for what aspects of information processing are
captured by the technique. The DRT is particularly slowed with
cognitive workload due to a decrease in the rate of evidence
accumulation, an effect that is substantially accentuated by an
increase in the amount of evidence required to trigger a response
but somewhat masked by a decrease in nondecision time. In terms
of applications to distracted driving, these findings support strat-
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egies and policies that optimize a driver’s allocation of limited
resources to the road. However, they also suggest there is scope for
improving driving performance by encouraging compensatory
strategies that give nondriving tasks lower priorities through
changing the amount of information required to make the associ-
ated choices and/or by making it easier to encode information for
the nondriving tasks, and through training to decrease motor pro-
duction times for the associated responses.

In closing, this research provides a framework for accurately
quantifying cognitive workload and the factors that contribute to it,
which will allow future researchers and policymakers to determine
the danger inherent in many tasks within the vehicle. Additionally,
it is possible that future experimental manipulations will alter the
information processing dynamics underlying the DRT. The formal
modeling described herein will assist in identifying changes to the
factors underlying cognitive workload and allow this framework to
be flexibly applied across multiple paradigms.
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